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Motivation
● Spiking neural networks (SNNs) encode information with temporal 

binary spikes, enabling power-efficient neural network models

Spiking Neural Network Design and Implementation

Neuron Architecture

Goal
● Evaluate the efficiency of different neuron models
● Design simple, low-power SNN hardware to classify handwritten digits of the MNIST dataset 
● SNNs are useful for edge AI applications that prioritize battery life (e.g., IOT, smart devices, 

embedded vision) without sacrificing performance

Neuron Models Decay Type Est. Accuracy Est. Power

Integrate-and-Fire (IF) N/A High Lowest

Leaky Integrate-and-Fire (LIF) Exponential Highest Highest

Linear Decay LIF (LLIF) Linear High Low

Full SNN Architecture

Results and Conclusion

Testing Methodology
● Model weights trained using the snnTorch Python library on MNIST rate coded over 25 steps

● Simulated hardware models (IF, LIF, LLIF) with Synopsys VCS on 10,000 input streams 

● Synthesized in IBM 130 nm process using Synopsys DC with ARM SRAM IP to store weights

Neuron Model Comparison

Architecture Specifications
● 28x28 flattened to 784 input spikes

● 2 fully connected layers: 100 and 10 neurons

● Input spikes are sent to the network one at a time, to each neuron in parallel

Conclusion
● Our design strikes a healthy balance between performance, efficiency, and accuracy

● Exponential leak logic creates significant overhead with marginal accuracy benefits; linear leak 
logic is more feasible

Project Motivation and Goal
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Neuron Hardware
● Leak logic

○ IF: No leaking

○ LIF: divide stored membrane potential every cycle → exponential decay

○ LLIF: subtract from stored membrane potential every cycle → linear decay 

● Weights and biases quantized to 8-bit fixed point

Model Power Area SW Accuracy

IF 13.71 mW 7.51 mm2 97.37%

LIF 17.47 mW 13.66 mm2 97.83%

LLIF 14.21 mW 8.16 mm2 N/A

Implementation Power Area Throughput HW Accuracy Tech

Ours (IF) 13.71 mW 7.51 mm2 5K imgs/sec 96.28% 130 nm

ISSC’19 [1] 23.6 mW 10.08 mm2 100K imgs/sec 97.83% 65 nm

VLSI’17 [2] 87.0 mW 1.31 mm2 1.7M imgs/sec 88% 40 nm

μBrain [3] 73 μW 2.68 mm2 238 imgs/sec 91.7% 40 nm

Comparison with Other SNN Accelerators for MNIST

MNIST Spike Rate Encoding

25 Steps


