

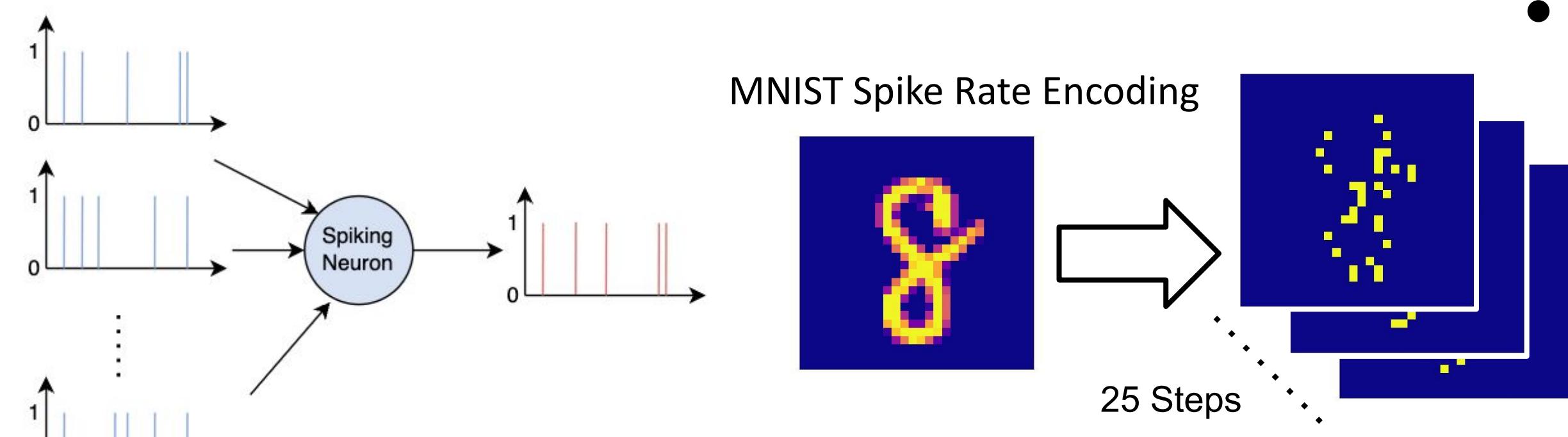
Evaluating Neuron Models for a 130-nm Spiking Neural Network Hardware Accelerator

Amy Liu, Finn Moore, Kristen Schang, Isaac Schuster, Emily Su
University of Michigan

Project Motivation and Goal

Motivation

- Spiking neural networks (SNNs) encode information with temporal binary spikes, enabling power-efficient neural network models



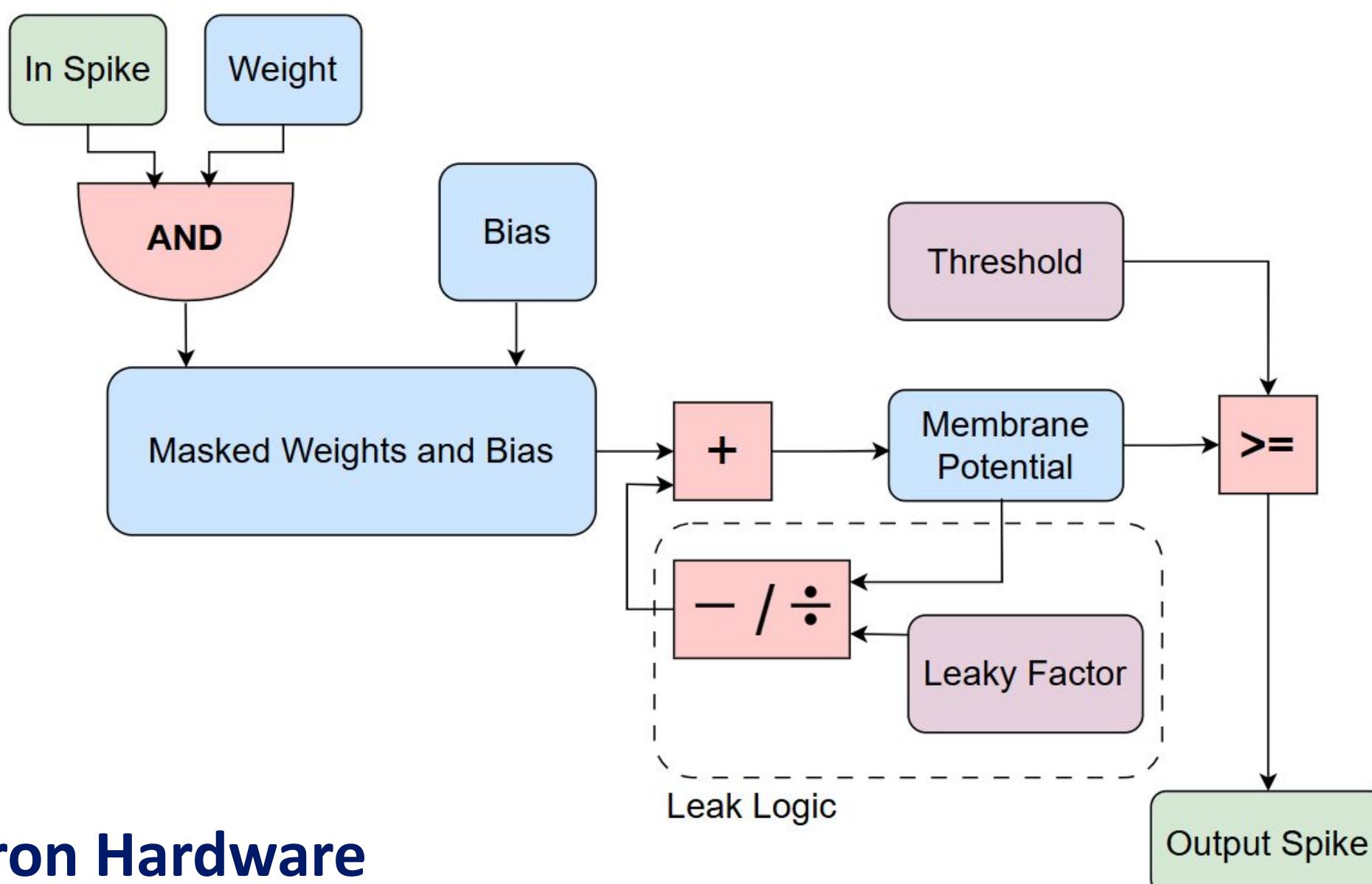
Goal

- Evaluate the efficiency of different neuron models
- Design simple, low-power SNN hardware to classify handwritten digits of the MNIST dataset
- SNNs are useful for edge AI applications that prioritize battery life (e.g., IoT, smart devices, embedded vision) without sacrificing performance

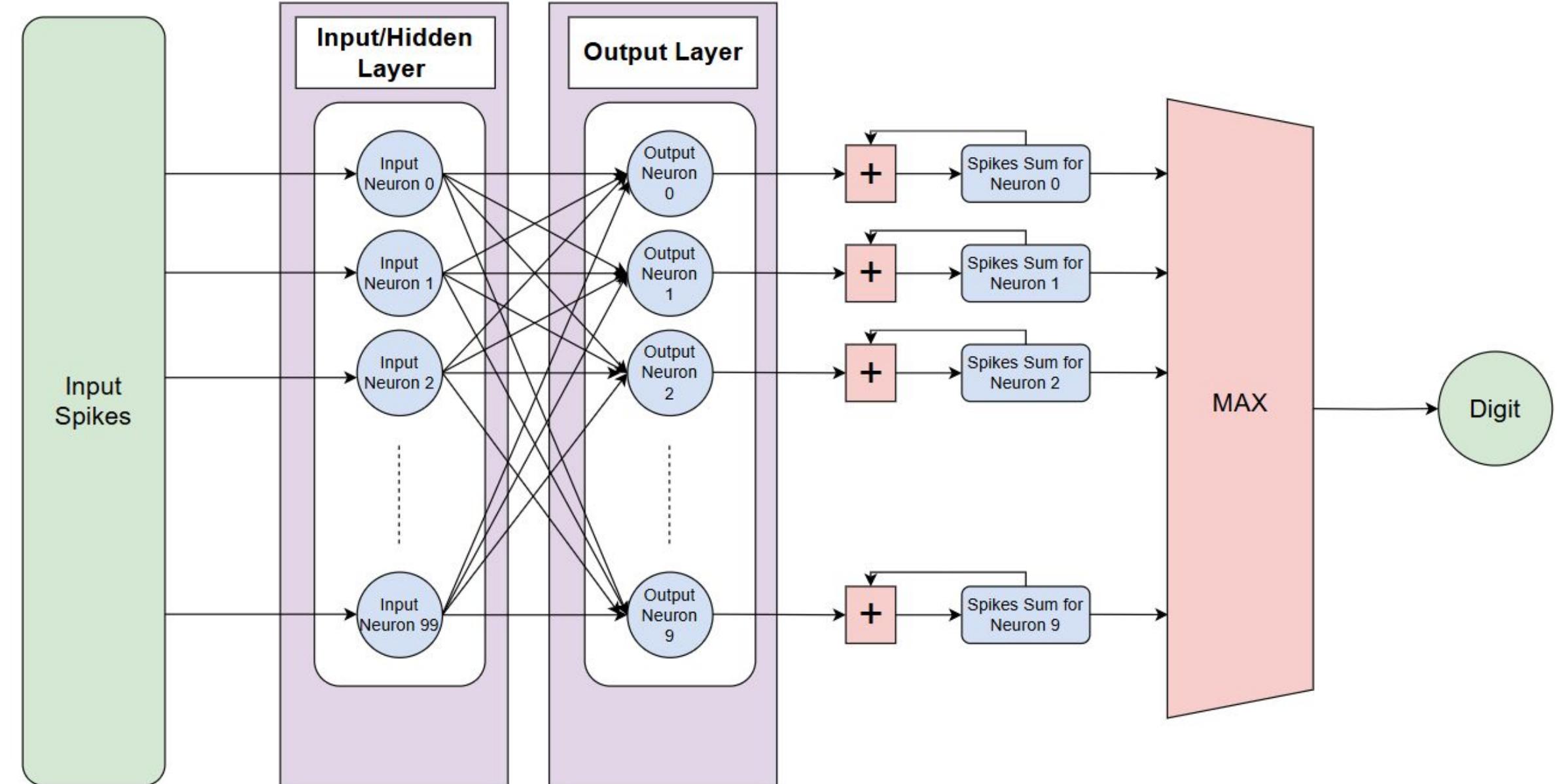
Neuron Models	Decay Type	Est. Accuracy	Est. Power
Integrate-and-Fire (IF)	N/A	High	Lowest
Leaky Integrate-and-Fire (LIF)	Exponential	Highest	Highest
Linear Decay LIF (LLIF)	Linear	High	Low

Spiking Neural Network Design and Implementation

Neuron Architecture



Full SNN Architecture



Architecture Specifications

- 28x28 flattened to 784 input spikes
- 2 fully connected layers: 100 and 10 neurons
- Input spikes are sent to the network one at a time, to each neuron in parallel

Results and Conclusion

Testing Methodology

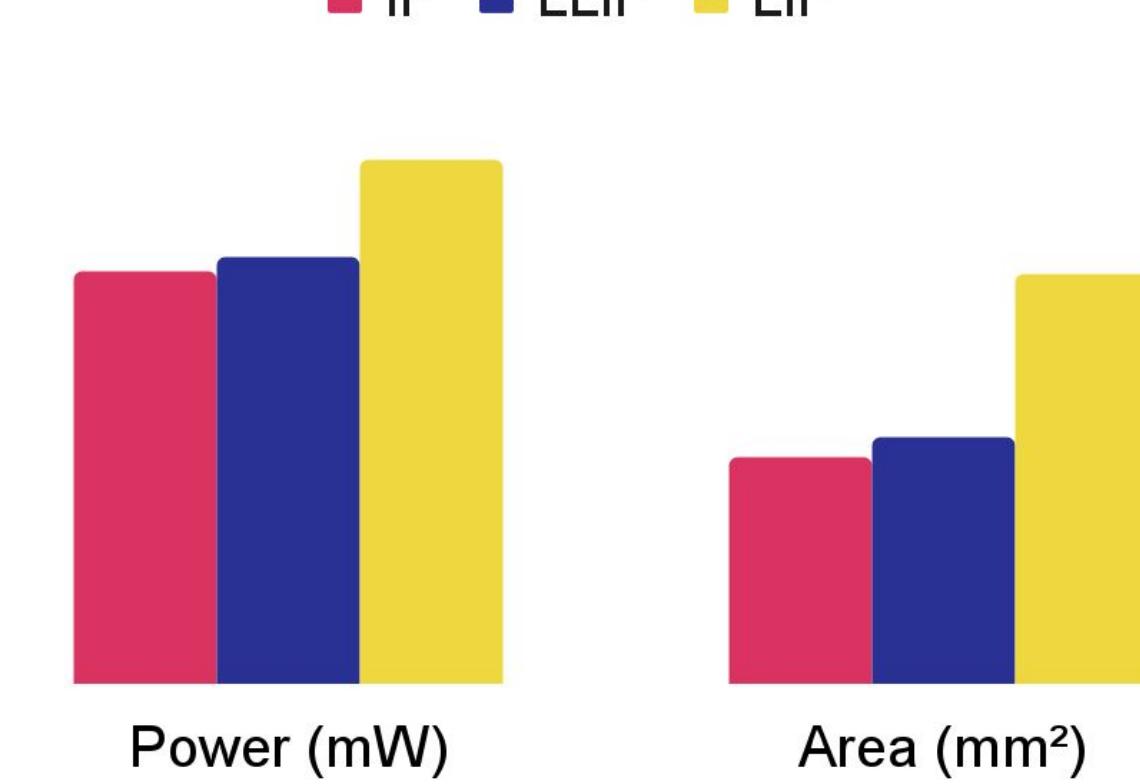
- Model weights trained using the snnTorch Python library on MNIST rate coded over 25 steps
- Simulated hardware models (IF, LIF, LLIF) with Synopsys VCS on 10,000 input streams
- Synthesized in IBM 130 nm process using Synopsys DC with ARM SRAM IP to store weights

Neuron Model Comparison

Model	Power	Area	SW Accuracy
IF	13.71 mW	7.51 mm ²	97.37%
LIF	17.47 mW	13.66 mm ²	97.83%
LLIF	14.21 mW	8.16 mm ²	N/A

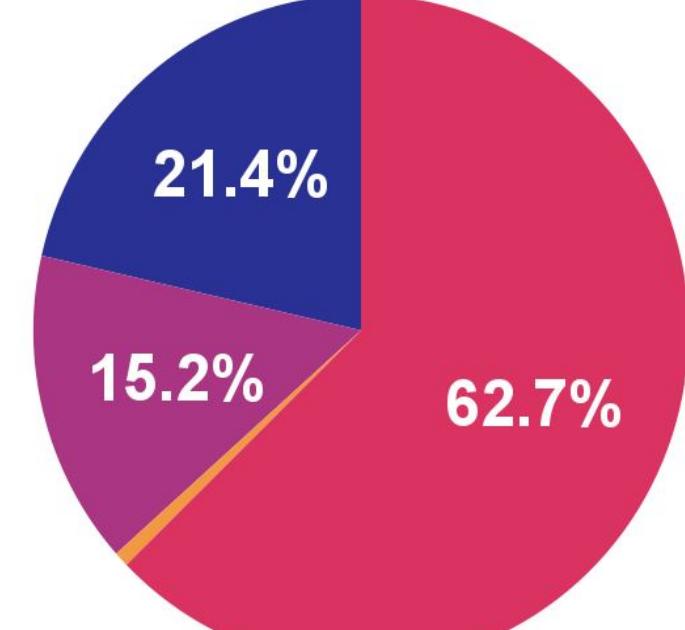
Neuron Model Comparison

■ IF ■ LLIF ■ LIF

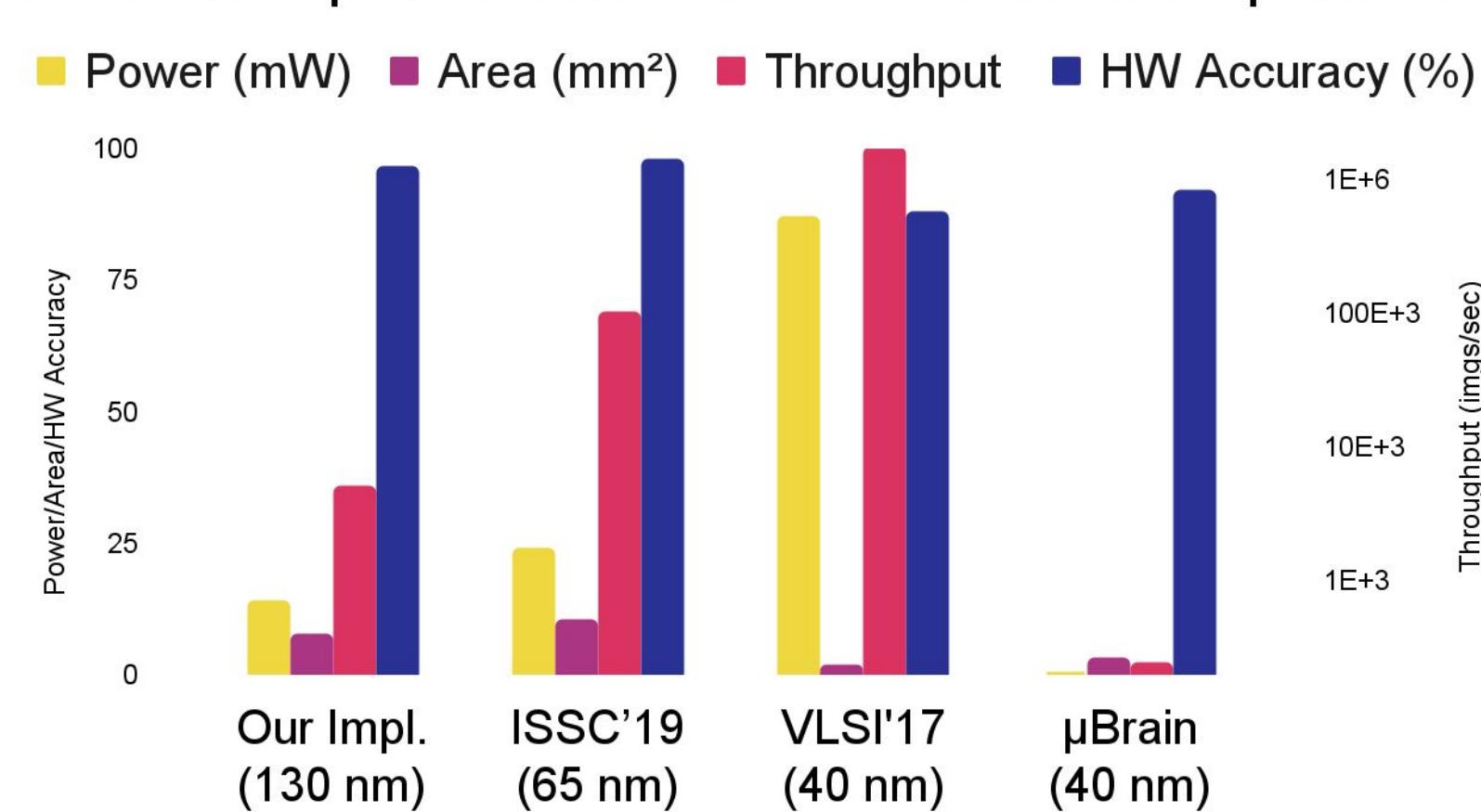


Power Breakdown of IF Design

● Clock Network ■ Registers ● Logic ● Memory



Neuromorphic MNIST Processors Comparison



Conclusion

- Our design strikes a healthy balance between performance, efficiency, and accuracy
- Exponential leak logic creates significant overhead with marginal accuracy benefits; linear leak logic is more feasible

References

- J. Park, J. Lee et al, "A 65-nm Neuromorphic Image Classification Processor With Energy-Efficient Training Through Direct Spike-Only Feedback," in *IEEE Journal of Solid-State Circuits*, vol. 55, no. 1, pp. 108-119, Jan. 2020.
- F. N. Buhler et al, "A 3.43tops/w 48.9pj/pixel 50.1nj/classification 512 analog neuron sparse coding neural network with on-chip learning and classification in 40nm cmos," in *2017 Symposium on VLSI Circuits*, 2017, pp. C30-C31.
- J. Stuijt et al, "μbrain: An event-driven and fully synthesizable architecture for spiking neural networks," *Frontiers in neuroscience*, vol. 15, p. 664208, 2021.