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Project Motivation and Goal

Motivation Goal

e Spiking neural networks (SNNs) encode information with temporal e Evaluate the efficiency of different neuron models
binary spikes, enabling power-efficient neural network models e Design simple, low-power SNN hardware to classify handwritten digits of the MNIST dataset
A ® SNNs are useful for edge Al applications that prioritize battery life (e.g., 0T, smart devices,

embedded vision) without sacrificing performance
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Spiking Neural Network Design and Implementation
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Architecture Specifications
e 28x28 flattened to 784 input spikes
e 2 fully connected layers: 100 and 10 neurons

o |F: No leaking
o LIF: divide stored membrane potential every cycle — exponential decay

O LLIF: subtract from stored membrane potential every cycle — linear decay e Input spikes are sent to the network one at a time, to each neuron in parallel

e \Weights and biases quantized to 8-bit fixed point _
Results and Conclusion

Testing Methodology Neuron Model Comparison

e Model weights trained using the snnTorch Python library on MNIST rate coded over 25 steps mmm SW Accuracy

e Simulated hardware models (IF, LIF, LLIF) with Synopsys VCS on 10,000 input streams

e Synthesized in IBM 130 nm process using Synopsys DC with ARM SRAM [P to store weights 13.74 mW | 7.51 mm’ 27.37%
LIF 17.47 mW  13.66 mm? 97.83%
Comparison with Other SNN Accelerators for MNIST m 201 mW | 816 mm? N/A
imlementaion _Power e Toughout W Acasor__Tech
Ours (IF) 13.71 mW 7.51 mm? 5K imgs/sec 96.28% 130 nm Neuron Model Comparison
ISSC’19 [1] 23.6 mW 10.08 mm? 100K imgs/sec 97.83% 65 nm miF ®mLLIF ©LIF
VLSI'17 (2 87.0 mW 1.31 mm? 1.7M imgs/sec 88% 40 nm ”
uBrain [3] 73 uW 2.68 mm? 238 imgs/sec 91.7% 40 nm "
Power Breakdown of IF Design Neuromorphic MNIST Processors Comparison ) -
® Clock Network © Registers ® Logic ® Memory Power (mW) ® Area (mm?) ® Throughput ® HW Accuracy (%)
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