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Abstract—In recent years, the investigation of neural networks
has attracted a large audience of researchers in various fields.
Neural networks have wide-ranging applications in computer
vision and machine learning, and can be useful for low-power
applications such as surveillance systems or wearable devices.
One type of neural network, spiking neural networks (SNNs), uses
binary spikes as inputs and outputs to each node, or neuron,”
in a network. This characteristic allows SNNs to have less power
consumption than traditional neural networks. Furthermore,
hardware accelerators for neural networks offer significant
performance speed-ups and increased energy efficiency over their
software counterparts. In a digital hardware implementation of
an SNN, neurons can be modeled in many different ways; the
way they are modeled determines how a neuron triggers an
output spike and has ramifications on the power and accuracy
of an SNN implementation. The neuron models investigated
in this work are Integrate-and-Fire (IF); Leaky-Integrate-and-
Fire (LIF) with exponential decay; and Leaky-Integrate-and-
Fire with linear decay (LLIF), which is used to approximate
an exponential decay factor. Digital hardware implementations
of an SNN with each of the neuron models were designed in
SystemVerilog, and the accuracy, power, and area among each
of these implementations were compared. It was found that the
use of digital exponential leak logic creates significant power and
area overhead with marginal accuracy benefits; linear leak logic
is more feasible for a hardware implementation. Overall, our
implementation achieved an accuracy of 95.0% when tested on
10,000 inputs from the MNIST dataset, and has a throughput of
31.35K images/second with 13.71 mW power consumption and
7.51 mm? area. In general, for simple data sets like MNIST, IF
neurons, without the overhead of any leak logic, may be the most
viable solution in terms of balancing performance, efficiency, and
accuracy.

I. INTRODUCTION

The investigation of spiking neural networks (SNNs) is an
emerging subdivision of machine learning. Inspired by the
biology of real neurons, SNNs are a unique take on neural
networks with promise for low-power applications [1]. SNNs
are made of a large number of individual nodes called neurons,
and information is passed from neuron to neuron through
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spikes — similar to a single binary number O or 1. These
signals encode information in the frequency of the spikes,
as well as a weight assigned to the spike source. Each of
the weights, depending on the input spikes, is summed in the
membrane potential of each neuron. If this potential crosses
a set threshold, the neuron sends out a spike and resets its
potential. Based on the neuron architecture used in the SNN,
implementation complexity or accuracy can be traded for
lower power or area in a desired application.

A large portion of the energy savings SNNs can provide
comes from their sparse nature and absence of multiplication
operations. They are well-suited to serve sparse inputs where
data is received in small bursts, such as when input data to
the model has been rate-encoded. Rate encoding means that
instead of having one image, a set of binary spike trains
represents a single time step; each pixel is represented by a
rate instead of a singular value. For example, a pixel that is
brighter will spike more frequently than a pixel that is dark.
Figures 1 and 2 show these rate-encoded spikes, which are
also temporally encoded as they enter and leave a neuron.
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Fig. 1. Image intensity rate encoding of MNIST dataset.

Using spikes as the fundamental unit in computation, SNNs
are able to utilize less power-intensive operations to offer
the same performance as traditional neural networks. This
computational framework offers a unique opportunity to create
hardware that is specifically designed for SNNs. The chal-
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Fig. 2. Spiking neural networks (SNNs) encode information with temporal
binary spikes. The single spiking neuron takes in binary spikes as inputs,
performs computations, and returns binary spikes as outputs.

lenge in developing SNN hardware comes from selecting the
most optimal combination of features — like learning rules,
STDP algorithms, and type of neuron — that minimizes power
consumption without sacrificing correctness. One issue that
is particularly relevant for a hardware-based implementation
is the tradeoff between different models of leak logic in each
neuron. For example, an Integrate-and-Fire (IF) neuron model,
which saves the membrane potential in a neuron each cycle
without decay, and different types of Leaky-Integrate-and-Fire
models (LIF or LLIF), which have the membrane potential in
a neuron decay each cycle, are types of neuron models that
are commonly used in SNNs. IF neuron models are simpler
to implement but often come at the cost of some accuracy;
meanwhile, an LIF neuron model may be more accurate, but
hardware implementations of the LIF or LLIF neuron models
are more complex and may be overly power-intensive. Neurons
with decay are generally expected to be more accurate than
those without decay, as there is an implicit bias towards more
recent input than older inputs. This paper aims to answer
the question of which neuron model or implementation of
leak logic in hardware is most worthwhile. The goal of the
project is to determine an optimal hardware implementation
for SNNs that balances power, performance, and accuracy, by
experimentally developing and testing different combinations
of neuron models in a hardware-based SNN implementation.

Additionally, the hardware implementation of an SNN
investigated in this paper can be especially advantageous
for applications which require low power consumption [2].
Most current hardware implementations of SNNs implement
adaptive learning algorithms such as spike-timing dependent
plasticity (STDP), which are not required for applications in
which models can be trained separately from the hardware, and
their corresponding weights can be pre-computed and stored
[3]. The implementation proposed in this paper forgoes this
functionality, as it may be extraneous for simple applications
that do not require real-time adaptive learning, and thus saves
on the power that this feature would require and lowers the
complexity of the hardware. In these applications, battery
life is often a primary concern. For example, in use cases
such as traffic surveillance or wearable devices, a simpler im-

plementation that forgoes power-intensive training techniques
in favor of a simpler model with a longer battery life is
advantageous. In these cases, the implementation described in
this paper, which has low power consumption and hardware
complexity compared to traditional models, can be more de-
sirable than other implementations of spiking neural networks.
Furthermore, choosing a neuron model that prioritizes power
at the tradeoff of some accuracy may be beneficial for these
applications.

The rest of this paper is as follows: Section III is Design and
Section IV is Testing Methodology. Our results are in Section
V, and Section VI is the Conclusion. Lastly, we wrap up our
paper in Section VII with Team Member Contributions.

II. BACKGROUND

Advancements in SNN algorithms and emulation tools
have facilitated the application of SNNs to numerous fields.
SNNs provide the potential to bring low-overhead Al models
to areas where they were previously unavailable. As well,
continuing advances in accelerators for SNNs allow for much
more research into this field. Previous implementations of
neuromorphic chips that support spiking neural networks
have reported power savings. Some examples include Loihi
[3], TrueNorth [4], and Chen et al. [5]. There have also
been multiple FPGA-based implementations of SNNs [6], [7].
These implementations use techniques such as approximate
computing and parallel processing to optimize power and
speedup. To test and develop an SNN, many implementations
use the Modified National Institute of Standards and Tech-
nology (MNIST) database, a large set of handwritten digits
that can be used to train models for image classification.
Many of these image classification SNN-based accelerators
have proven to be energy-efficient while high in accuracy, and
our hardware-based spiking neural network implementation
will be compared against these models. Additionally, these
existing implementations do not analyze the effects of using
different neuron architectures. As such, using differing models
of the decay functionality in the LIF unit, or instead using
an Integrate-and-Fire (IF) unit, has power, area, and accuracy
tradeoffs which remain to be evaluated.

A. ISSC’19

Park et al. [8] developed a 65nm on-chip neuromorphic pro-
cessor that allowed for energy-efficient on-chip learning and
used a direct spike-only feedback mechanism. Their hardware
consists of an input layer containing the spike converters, two
hidden layers containing 200 neurons each, and an output layer
containing 10 target neurons. An SRAM is shared by each
of five neurons in the hidden layer for storing weights and
enhancing area efficiency. At the training stage, weight updates
are made out-of-order for forward passes to proceed without
waiting for weight updates to complete and are skipped when
deemed redundant. When trained on the MNIST dataset,
their processor achieves a 97.83% accuracy rate with only
approximately 7.5% energy overhead for inference. The design



consumes 23.6 mW in power, with a throughput of 100K img/s
and a total area of 10.08 mm?2.

B. VLSI'17

Buhler et al. [9] designed a 40nm digital-analog hybrid
spiked-based neural network processor. Their hardware imple-
ments the Locally Competitive Algorithm (LCA) that relies
on 512 analog LIF neurons, which are 3x smaller and 7.5x
less power consuming than the digital counterpart. The LIF
neurons are organized into two 256-neuron cores that each
consist of 64 neurons connected through a bus-ring topology
with shared SRAM for storing weights. The design allows
for spikes from any neuron to reach other neurons within
8 clock cycles and offers flexible core configurations. Their
chip achieves approximately 88% accuracy when trained on
MNIST, with a throughput of 1.7M img/s and a total area of
1.31 mm?.

C. pBrain

pBrain [10], developed by Stuijt et al., is a 40nm fully
digital, SNN-based, and event-driven neuromorphic processor
that is ultra-low-power. The design uses a non-Von-Neumann
architecture, replacing global clocks with a delay-cell based
oscillator system. The processor’s architecture consists of a
recurrent fully-connected layer of 256 IF neurons and two
fully connected layers of 64 and 16 IF neurons. Memory
and processing are co-located with each neuron, allowing lo-
cal spike computations without centralized memory accesses.
When trained on MNIST, pBrain achieves an accuracy of
91.7% while consuming only 73 W of power. The chip has
a total area of 2.82 mm? and a throughput of approximately
238 img/s.

III. DESIGN
A. Software Implementation

The snnTorch [11] Python library was used for the simu-
lation and training of SNNs, with both a neuron architecture
that did not implement leak logic and one that implemented
exponential leak logic. The training was done using backprop-
agation through time (BPTT) with surrogate gradients. Each
model was trained for handwritten digit classification on the
MNIST dataset, rate encoded over 4 steps.

B. Neuron Models and Architecture

At the core of an SNN design is the neuron architecture;
each neuron, of which there may be hundreds, is woven
together to create the overall network. At a high level, each
neuron receives an array of inputs, either from the previous
layer or from the input to the system. Each of the weights
stored in the neuron is summed with the corresponding neuron
bias and stored in the neuron’s membrane potential if its
corresponding input spike is high. If the membrane potential
exceeds a threshold, then the neuron will fire a spike to its
output. The intricacies in the neuron architecture come from
the storage of the membrane potential; to better simulate a
real neuron and the concept of “memory,” logic for the decay

of the stored membrane potential can be added to the neuron
architecture.

Our design compares three different neuron types: Integrate-
and-Fire (IF); Leaky-Integrate-and-Fire (LIF); and Linear-
Leaky-Integrate-and-Fire, i.e., LIF with a linear decay model,
to approximate the exponential decay factor (LLIF). What
differentiates the different models is the ability for the neuron
to simulate decay in the membrane potential. In the human
brain, if a membrane potential doesn’t reach a threshold, it will
decay over time [11]. This characteristic allows old inputs to
have less of an impact on the output spikes than newer inputs
do. An IF neuron doesn’t perform any decay. An LIF neuron
has exponential decay in its stored membrane potential every
cycle. An LLIF neuron simulates this decay linearly; a constant
amount is subtracted from the stored membrane potential every
cycle. Table I shows the different decay types among the in-
vestigated models, and the corresponding estimated accuracies
and power consumptions for the implementations.

TABLE I
EXPECTED PERFORMANCE OF NEURON MODELS

Neuron Models Decay Type  Est. Accuracy  Est. Power
Integrate-and-Fire (IF) None High Lowest
Leaky Integrate-and-Fire (LIF)  Exponential Highest Highest
LIF with Linear Decay (LLIF) Linear High Low

Before inference can be performed, the neurons must load
their corresponding weights and bias. The bias, which is
treated as a single weight that is always added to the membrane
potential, is read in first. Next, the weights are read in cycle
by cycle until all the weights have been read in. After that,
inference can happen, and the input spikes are sent to each
neuron. One input spike is consumed every cycle. For example,
in a layer with 100 inputs, it takes 100 cycles for one time step
to be completed. The benefit to doing this step over the span
of many cycles, as opposed to reading all the input spikes
in at once, is to reuse hardware components in the neuron
and lower the power consumption and area of the design.
An initial design, in which all inputs were consumed in one
cycle, was implemented. However, the amount of hardware
in each neuron was too large to be practical. Instead, we
opted for a minimal amount of hardware at the cost of some
performance. Future work may include finding a more optimal
balance between performance and hardware costs (i.e., area
and power). After the input spikes are sent to each neuron, it
will send a corresponding output spike to the next layer.

The architecture for the IF neuron, as seen in Figure 3,
contains logic for implementing the functionality mentioned
above. It accumulates all the weights that have a high input
spike and the bias, performs a comparison against a threshold,
and outputs a spike if the condition is met. The architecture
for the LIF and LLIF neurons, as seen in Figures 4 and 3,
respectively, shows the mechanisms for decay in the membrane
potential as well. One note about the LIF neuron is that the
hardware it synthesizes to may be different depending on the
decay rate chosen; for example, decaying by 50% each cycle



would be able to synthesize as a single shift. Other decay
factors would require more hardware which would further
increase area used. We chose to use an arbitrary decay factor
(e.g., divide the membrane potential by 5 every cycle), that
would not synthesize as a single shift to show the effects of a
more complicated hardware in the LIF neuron.
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Fig. 3. Architectural layout of the Integrate-and-Fire neuron. The membrane
potential is updated every cycle by adding the new masked weights and biases
with no leaky logic.
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Fig. 4. Architectural layout of the Leaky-Integrate-and-Fire neuron. The
membrane potential is divided by the leaky factor every cycle and added
by the masked weights and biases.
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C. Layer and Model Architecture

As described in Subsection B, the neurons in the network
are responsible for storing weights and biases. However, our
overall architecture, as shown in Figure 6, contains two layers:
one input/hidden layer with 100 neurons and one output layer
with 10 neurons.

The layer is created as an array of neurons and passes
the weights and bias values into the neurons, each of which
contains memory to store each value. In the initial start-up
phase of our SNN, weights and biases are read in one at
a time and then passed into each layer every clock cycle.
The layer manages a one-hot bit encoding that represents the
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Fig. 5. Architectural layout of the Leaky-Integrate-and-Fire neuron with a
linear decay model. The membrane potential is subtracted by the linear-decay
leaky factor every cycle and added by the masked weights and biases.

InputHidden
\L‘ Output Layer
\
e + . Pheono
! (Spas Somier
- | Al e 90
Input Neuron 2 ! Nouron 2 with maximum
o okt oun
m/ (Spkes Sumor
— /
A

Fig. 6. Full architectural layout of the spiking neural network.

neuron it is feeding the weights and biases into. At each clock
cycle, the layer updates the one-hot bit encoding and sends the
weight or bias value into all of the neurons in the layer. The
neuron that corresponds to the bit-encoded value then stores
the corresponding weight or bias. Once all the weights and
biases are read and passed into all the layers, the initial start-
up phase is complete, and inference begins.

During inference, the rate-encoded input spikes are passed
in one at a time at every clock cycle into the layers, which
are propagated through the two layers. The output spikes are
passed into an output module that performs the classification.
Over each time step, the output spikes for each of the 10
neurons from the output layer are added, and the neuron with
the maximum sum of spikes is identified as the final classified
digit. The purpose of the output module is to perform the
scorekeeping of the last layer of the network, so that a clean
digit can be the output of the hardware.

IV. TESTING METHODOLOGY

First, unit testing for each module, i.e., the neuron, layer,
and output modules, was performed. The testing here was done
first with simple test cases to prove functionality, and then
done with corner cases for edge case testing. After this, each
of the pieces was wired together to create the whole model.



TABLE II
COMPARISON WITH OTHER NEUROMORPHIC PROCESSORS FOR MNIST

After implementing the versions of the network using IF,
LIF, and LLIF neurons in SystemVerilog, the accuracy of
each implementation was tested for 10,000 cases. The first
step to test each model was to read in the weights and bias,

. . .. . Power  Hardware  Throughput Area Tech
which were obtained thr.01.1gh training the sn.nTorch. modefl in (m‘:?/V) Accu‘;/acy (inl:gg/sl))u (mm?) (nm) S°Or
software. To do the training, we ran behavioral simulations

. . . i This Work (IF) 13.71 95.0% 31.35K 7.51 130 1
for each implementation using Synopsys VCS on 10,000 input 1SSC’ 19 [8] 516 07 83% 100K 1008 e 071
streams. VLSI'17 [9] 87.0 88% LM 131 40 1396
Each design was then synthesized in the IBM 130 nm  wBrain [10] 0.073 91.7% 238 2.68 40 1.19

process using Synopsys Design Compiler with ARM SRAM
IP to store the weights. During this step, we optimized to
reduce area and power, so the clock cycle remained higher
that the minimum value to meet slack, for a final clock period
of 10.17 ns, resulting in a clock frequency of 98 MHz. Power
and area results were obtained from the synthesis report.

The power, performance, area, and accuracy were evaluated
against other published neuromorphic processor designs and
were found to have comparable specifications. Finally, the
specifications for the models with IF, LIF, and LLIF neurons
were compared among each other, and the tradeoffs among
them were analyzed.

V. RESULTS

The hardware-based SNN implementation created in this
work achieved final specifications of 16.16 mW, 7.51 mm?
area, 95.0% classification accuracy, and a throughput of
31.35K images per second. This performance is comparable
with some other SNN implementations, such as ISSC’19,
which has higher throughput but higher power and area [8].
To compare each design, an overall score metric normalized
for the process node was used. The equation to calculate the
model’s score is shown in Equation 1.

_ Throughput x Tech x Accuracy

Score
Power x Area

D

The scores were normalized and are shown in Table II.
Our design has a 40.8% increase in this metric compared
to ISSC’19. Other implementations, such as VLSI’17 and
pBrain, which prioritize throughput or power, have higher
scores in this metric than our implementation does. However,
the accuracies of their implementation are 88% and 91.7%,
respectively, which is much lower than the accuracy of our
implementation (95%) [9], [10]. For applications that require
a fair amount of accuracy (e.g., around 95%), our design
strikes an optimal balance between power, area, throughput,
and accuracy. Table II and Figure 7 detail the comparison
between other neuromorphic processor implementations and
the SNN developed in this project.

Overall, we found that the exponential decay logic in the
LIF neuron had significant power and area overhead; area
increased by around 80%, and power increased by around
30% over the IF implementation. The overhead for the LLIF
implementation, which implemented constant linear decay
each cycle, was much lower; power only increased by around
3%, and area only increased by around 8% in comparison to
the IF implementation. The benefits in accuracy with the leak

logic were marginal; when modeled in software, the accuracy
of the models with leak logic only achieved around 0.5%
classification accuracy over the simpler IF implementation.

These results indicate that an implementation of linear leak
logic is more feasible than exponential leak logic, if one
chooses to implement leak logic at all. Additionally, one thing
to note is that the implementation of exponential leak decay
described in this paper was done using a leak factor that
cannot synthesize as a single shift in each neuron; with tuning
decay numbers such that the exponential leak synthesizes
using simpler hardware, exponential leak logic may be more
realistic. For low-power applications that do not require an
extremely high degree of accuracy, an IF neuron architecture
will likely suffice.

TABLE III
POWER, AREA, AND SOFTWARE ACCURACY OF THE DIFFERENT NEURON
ARCHITECTURES

Neuron Model ~ Power (mW)  Area mm? SW Accuracy
IF 13.71 7.51 97.37%
LIF 17.47 13.66 97.83%
LLIF 14.21 8.16 N/A

Another observation made in our work was that memory
was an important design consideration for power consumption.
As seen in Figure 9, the power breakdown of the IF design
shows that 21.4 percent of the power usage is attributed to
memory. This proportion was likely due to the number of
values stored, as the weights and biases for each neuron
take a lot of memory to store. Future work in optimizing
power or area for an SNN design could include investigating
optimizations for the implementation of memory.
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Fig. 7. Comparison of our model with existing neuromorphic processors
trained on MNIST.
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Fig. 8. Power and area comparisons for our three neuron models: Integrate-
and-Fire, Leaky-Integrate-and-Fire, and Linear Leaky-Integrate-and-Fire.
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Fig. 9. Power breakdown of the Integrate-and-Fire neuron.

VI. CONCLUSION

SNNs offer area and power savings as opposed to traditional
neural networks. This work explores the intricacies of imple-
menting an SNN in hardware; it serves to analyze the trade-
offs among different choices of neuron architecture in terms
of power, area, and accuracy. Ultimately, current published
designs, such as those described in ISSC’19 and VLSI'17,
have comparable performance to our 130-nm implementation,
with some tradeoffs in terms of power, area, and throughput.
Our work sought to analyze the differences in performance,
power, and area of different neuron models, as well as create
a low-power, high-accuracy hardware implementation of an
SNN. The decrease in accuracy between the SNN with the

IF neuron model and SNN with neurons with leak logic was
small; however, the IF neuron implementation saw a significant
decrease in power and area when compared to an exponential
decay implementation. Ultimately, when implementing an
SNN in hardware, an IF neuron may be the most feasible
for applications that prioritize lower power, complexity, and
area over accuracy. These findings have applications in edge
Al, such as in surveillance systems or wearable devices. Future
work includes further investigating the effects of different leak
factors (i.e., ones that synthesize more cleanly to shifts in
hardware), and exploring different ways of storing weights
and biases in memory so as to further optimize the power of
the design.

VII. TEAM MEMBER CONTRIBUTIONS

Every group member was a key contributor to this project.
Most tasks were done as a full group; small tasks were done in
a divide-and-conquer fashion. Every team member had a role
to play in creating the final product. Below is a breakdown of
just a few of the things that each team member did.

e Finn - SNN training and weight quantization, SRAM
compilation and synthesis, debugging

e Amy - Implementation of different neuron models/layer
architecture and corresponding testbenches, debugging

e Emily - Output module implementation, neuron/layer
implementation, debugging, schematic drawing

o Kiristen - Output module implementation, neuron/layer
implementation, debugging

« Isaac - Neuron/layer implementation, debugging, experi-
menting with different neuron implementations

The above list is just a brief overview of the contributions of
each member. Each group member was a driving force during
the debugging process, testing, and report/milestone writing.
Overall, everyone pulled their weight and saw the project to
fruition.
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