
QREAL FPGA Report

Finn Moore
fdm@umich.edu

University of Michigan

Introduction
Quantum information science (QIS) has revolutionized communication, sensing, and computing capabil-
ities by leveraging the unique properties of quantum states. Quantum receivers play a pivotal role in
improving performance by enabling enhanced information processing tasks such as quantum-state dis-
crimination and parameter estimation. Traditional analytical approaches to Quantum Receivers struggle
to adapt to diverse operational conditions and are quickly overwhelmed by noise in practical scenarios.
To address this challenge, we utilize the Quantum Receiver Enhanced by Adaptive Learning (QREAL)
architecture. QREAL leverages reinforcement learning to adaptively design quantum receivers capable
of tackling a wide range of QIP problems and environmental conditions. Our results showcase the ability
of QREAL to adapt to noise and imperfections, thereby outperforming conventional quantum receivers
and classical approaches.

Methodology

1 Receiver Architecture

Figure 1: Receiver Architecture

The receiver was developed in three parts (1). The quantum hardware system was developed using
a phase-locking interferometer and a superconducting nanowire single-photon detector (SNSPD). The
FPGA control unit was developed in Verilog using Xilinx Vivado and deployed onto a Red Pitaya board.
The adaptive learning model was developed in Python using the TensorFlow library.

2 FPGA Controller

2.1 Introduction
A field programmable gate array (FPGA) is an integrated circuit composed of many logic elements
formed by look-up tables (LUTs). Due to the D-Flip-Flop in each of these logic elements as shown in 3,

1

Figure 2: Optical Setup [1]

Figure 3: Basic Logic Element [2]

each LUT can either produce their output sequentially or combinationally, based on the programming
of the FPGA. These basic logic elements are connected to form configurable logic blocks (4), and an
array of configurable logic blocks connected to inputs and outputs forms an FPGA (5). An FPGA is
programmed in a hardware description language (HDL) like Verilog or VHDL, where the programmer
directly defines the digital logic that can be synthesized and translated into hardware. Once an HDL
module is synthesized, the SRAM cells of the basic logic elements in the FPGA are populated with the
values required to implement the programmed logic function.

2.2 Red Pitaya
The FPGA board selected for this project is the Red Pitaya STEMlab 125-14 as seen in 6. This board
includes an Xilinx Zynq 7010 FPGA and a Dual-Core ARM Cortex-A9 MPCore processor for running
Linux. The board also includes two SMA inputs and outputs. The inputs are used for synchronizing the
locking circuit and for the SNSPD. The outputs control the phase and amplitude modulators in the local
oscillator (LO) arm of the fiber optic circuit (2). The Red Pitaya is also equipped with a 125 MS/s 14-bit
analog-to-digital converter (ADC). For this experiment, the Red Pitaya was programmed using Xilinx
Vivado incorporating open-source and custom Verilog cores. The Linux processor was also used to run
custom C programs for setting and reading BRAM values to communicate with the machine learning
model.

2

Figure 4: Configurable Logic Block [2]

Figure 5: FPGA [2]

3

Figure 6: Red Pitaya STEMlab 125-14

2.3 Block Design
The block design (7) for the FPGA was developed in Xilinx Vivado and consists of four main components.
Each of these modules works together to implement the data processing and communication between the
formulator and the optical setup. The four main components are as follows:

2.3.1 DataAquisition (8)

This module uses the open-source AXI4-Stream core axis_red_pitaya_adc_0 developed by Anton Po-
tocnik [3] and a signal splitter to read the synchronization and SNSPD values from the ADC.

2.3.2 Xilinx Processing System (9)

Next is the processing system PS7 consisting of a ZYNQ IP core (processing_system7_0) allowing the
FPGA to interface with the Linux processor.

2.3.3 Control (10)

The most important component, control, consists of many different sub-modules. The first of which
(axi_gpi_0) is another open-source module enabling the use of a GPIO address on the Red Pitaya in
conjunction with a C script to control whether block memory (BRAM) is being read or written to. This
controls the bit enabling the axis_bram_writer_0 module to write data to BRAM. In the case where the
C program tells the FPGA to write BRAM, it takes the detection data from our custom Verilog module,
QREAL_42_BPSK_0 (A). This module consists of a state machine that implements the QREAL logic: for
every cycle, for every bin, count the detections from the SNSPD and adjust the displacement for the
signal generator. Finally, store the detections in BRAM to be sent to the machine learning model.

2.3.4 Signal Generator (11)

The fourth important module is the Singal Generation Module. This module actuates the displacement
adjustment specified by the QREAL logic and creates signals to adjust the phase and amplitude modu-
lators of the optical setup. It does this by reading BRAM from an address specified by the control unit
and inputting that data to an open source DAC module [3] axis_bram_reader_0 to be sent on the SMA
outputs.

4

Figure 7: Overall Block Design

Figure 8: DataAcquisition Module

Figure 9: Processing System Module

5

Figure 10: Control Module

Figure 11: Signal Generation Module

6

2.4 C Programs
For communicating with the formulator, we need a way to take inputs and outputs from a regular
operating system. To do this, we leverage the Linux chip present on the Red Pitaya board and its
connection to the FPGA via the open-source AXI cores present in our block diagram allowing the reading
and writing of GPIO and BRAM. To access the BRAM of the Red Pitaya board, the C scripts must
utilize a pointer to the BRAM address specified in the block design for memory-mapped IO. The values
in this range can be accessed through pointer arithmetic and bit shifting as seen in B.

Simulation Results
Our model shows significant performance benefits over heterodyne in simulation.

Figure 12: Velocimetry Mean Square Error Performance

Figure 13: Velocimetry Mean Absolute Percentage Error Performance

7

Outlook
The outlook for this project is promising, marked by advancements in quantum receiver technology
facilitated by the QREAL architecture. Leveraging reinforcement learning, QREAL has demonstrated
adaptability to diverse operational conditions and noise environments, showcasing improved performance
compared to traditional analytical approaches. Moving forward, key areas of focus for improvement
include addressing noise sources in the optical setup and refining the code used to facilitate the experiment.
By continuing to innovate and refine these technologies, this project is positioned well to contribute
significantly to the advancement of QIS and its applications in communication, sensing, and computing
domains.

References
[1] Chaohan Cui, William Horrocks, Shuhong Hao, Saikat Guha, Nasser Peyghambarian, Quntao Zhuang,

and Zheshen Zhang. Quantum receiver enhanced by adaptive learning. Light: Science & Applications,
11(1):344, December 2022.

[2] Umer Farooq, Zied Marrakchi, and Habib Mehrez. FPGA Architectures: An Overview. In Tree-based
Heterogeneous FPGA Architectures, pages 7–48. Springer New York, New York, NY, 2012.

[3] Anton Potocnik. redpitaya_guide. https://github.com/apotocnik/redpitaya_guide, 2019.

A QREAL_42_BPSK.v

1 module QREAL_42_BPSK(
2 input clk,
3 input synch,
4 input signed [15:0] snspd,
5 output [31:0] result,
6 output synch_out,
7 output [9:0] add_result,
8 output [9:0] add_disp,
9 output wren

10 // output done
11);
12 // parameters
13 reg signed [15:0] THRESHOLD = 16'd1600;
14 parameter [9:0] ADD_LOCKING = 1022;
15 //regs for values
16 reg [31:0] reg_result = 0;
17 reg signed [15:0] reg_snspd;
18 reg reg_synch = 0;
19 reg [9:0] reg_add_result = 0;
20 reg [9:0] reg_add_disp = 0;
21 reg [9:0] reg_add_disp_real = 0;
22 reg reg_wren = 0;
23 reg reg_photoncount = 0;
24 reg [9:0] reg_Q = 10'b1011010010;
25 //regs counters
26 reg [10:0] reg_counter_framedelay = 0;
27 reg [9:0] reg_counter_bin = 0;
28 //regs states
29 reg [1:0] reg_state = 0;
30 reg [1:0] reg_binidx = 0;
31 reg [1:0] reg_cycleidx = 0;
32
33 reg [31:0] reg_test = 100;
34
35 always @(posedge clk) begin
36 reg_snspd <=snspd;
37 reg_synch <= synch;
38 case(reg_state)
39 2'b00: begin // locking & modulation
40 if(!reg_synch && synch) begin // rising edge of sync
41 reg_state <= 2'b01;
42 reg_add_result <= reg_add_result + 1;
43 reg_result <= reg_Q[9];
44 end
45 end
46
47 2'b01: begin // waiting shutter goes off
48 if(reg_counter_framedelay == 11'd2000) begin // when delay is over
49 reg_counter_framedelay <= 0;

8

https://github.com/apotocnik/redpitaya_guide

50 reg_state <= 2'b10;
51 reg_add_disp <=0;
52 reg_add_disp_real <= reg_Q[9]*100;
53 end
54 else begin
55 reg_counter_framedelay <= reg_counter_framedelay + 1;
56 end
57 end
58
59 2'b10: begin // qreal logic
60 if(reg_counter_bin == 10'd625) begin // if the bin is over
61 reg_counter_bin <= 0;
62 reg_result <= (reg_result << 1) + reg_photoncount;
63 reg_photoncount <= 0;
64 if(reg_binidx == 2'b11) begin // if the cycle is over
65 reg_binidx = 2'b00;
66 reg_add_disp <= 0;
67 reg_add_disp_real <= reg_Q[9]*100;
68 if(reg_cycleidx == 2'b10) begin // if the last cycle is over
69 reg_state <= 2'b11;
70 reg_cycleidx <= 2'b00;
71 reg_add_disp <= ADD_LOCKING;
72 reg_add_disp_real <= ADD_LOCKING;
73 end
74 else
75 reg_cycleidx <= reg_cycleidx + 1;
76 end
77 else begin// if the cycle is not over
78 reg_binidx <= reg_binidx + 1;
79 reg_add_disp <= (reg_add_disp << 1) + 1 + reg_photoncount;
80 reg_add_disp_real <= (reg_add_disp << 1) + 1 + reg_photoncount + reg_Q[9]*100;
81 end
82 end
83 else begin // within a bin
84 if((reg_snspd < THRESHOLD) && (snspd > THRESHOLD) && (reg_counter_bin > 125))
85 reg_photoncount <= 1;
86 reg_counter_bin <= reg_counter_bin + 1;
87 end
88 end
89
90 2'b11: begin // storing result
91 if(reg_synch && !synch) begin // falling edge of sync
92 reg_state <= 2'b00;
93 reg_wren <= 0;
94 reg_Q <= (reg_Q << 1) + reg_Q[9]∧reg_Q[6];
95 end
96 else begin
97 reg_wren <= 1;
98 end
99 end

100 endcase
101 end
102
103 assign result = reg_result;
104 assign add_result = reg_add_result;
105 assign add_disp = reg_add_disp_real;
106 assign wren = reg_wren;
107 endmodule

B QREAL_42_BPSK.c

1 #include <stdio.h>
2 #include <stdint.h>
3 #include <unistd.h>
4 #include <sys/mman.h>
5 #include <fcntl.h>
6 #include <string.h>
7 #include <stdlib.h>
8

9 int main(int argc , char **argv)
10 {
11 int fd;
12 FILE* fp;
13 void *rd;
14 void *ctrl;
15 void *wr;
16 char *name = "/dev/mem";
17 const int freq = 124998750; // Hz

9

18 uint32_t buffer [1024];
19 uint32_t j;
20 uint32_t b;
21 uint32_t i;
22 uint32_t c;
23 uint32_t result [17] = {0};
24 uint32_t a[32];
25 int32_t dispa [15] =

{2981 ,3003 ,3542 ,3575 ,3487 ,3685 ,3542 ,3872 ,3366 ,3685 ,3685 ,3597 ,3036 ,3685 ,3630};
26 int32_t dispp1 [15] = {4664 ,4664 ,0 ,4664 ,0 ,0 ,4664 ,4664 ,0 ,0 ,4664 ,0 ,4664 ,4664 ,0};
27 int32_t dispp2 [15] = {0 ,0 ,4664 ,0 ,4664 ,4664 ,0 ,0 ,4664 ,4664 ,0 ,4664 ,0 ,0 ,4664};
28

29 printf("One\n");
30 if((fd = open(name , O_RDWR)) < 0)
31 {
32 perror("open");
33 return 1;
34 }
35 if (!(fp = fopen("result.txt", "w"))) {
36 printf("Error opening file\n");
37 }
38 printf("Two\n");
39 rd = mmap(NULL , sysconf(_SC_PAGESIZE), PROT_READ|PROT_WRITE , MAP_SHARED , fd , 0x40000000

);
40 wr = mmap(NULL , sysconf(_SC_PAGESIZE), PROT_READ|PROT_WRITE , MAP_SHARED , fd , 0x40010000

);
41 ctrl = mmap(NULL , sysconf(_SC_PAGESIZE), PROT_READ|PROT_WRITE , MAP_SHARED , fd, 0

x41200000);
42 printf("Three\n");
43

44 // -1~1V -8192~8191
45 for(j = 0; j < 15; ++j)
46 (*((int32_t *)(wr + 4*j))) = (dispa[j]<<16) + dispp1[j] ;
47 for(j = 0; j < 15; ++j)
48 (*((int32_t *)(wr + 4*(100+j)))) = (dispa[j]<<16) + dispp2[j] ;
49 (*((int32_t *)(wr + 4*1022))) = 0 + (341 <<16);
50 (*((uint32_t *)(ctrl))) = 1<<0; // wren high
51 sleep (2);
52 (*((uint32_t *)(ctrl))) = 0<<0; // wren low
53

54 for(j = 0; j < 1024; ++j)
55 {
56 buffer[j] = (*((uint32_t *)(rd + 4*j)));
57 }
58

59 printf("Five\n");
60 for(j = 0; j < 1024; ++j)
61 {
62 b = buffer[j];
63 fprintf(fp , "%d\n", buffer[j]);
64 for(i = 0; i < 17; ++i)
65 {
66 result[i] = b%2;
67 b = b/2;
68 }
69 printf("%u\t",result [16]);
70 for(i = 0; i < 4; ++i)
71 printf("%u",result [15-i]);
72 printf("\t");
73 for(i = 0; i < 4; ++i)
74 printf("%u",result [11-i]);
75 printf("\t");
76 for(i = 0; i < 4; ++i)
77 printf("%u",result[7-i]);
78 printf("\t");
79 for(i = 0; i < 4; ++i)
80 printf("%u",result[3-i]);
81 printf("\n");
82 }
83

84 munmap(rd, sysconf(_SC_PAGESIZE));
85 munmap(ctrl , sysconf(_SC_PAGESIZE));

10

86 munmap(wr, sysconf(_SC_PAGESIZE));
87 return 0;
88 }

11

	Receiver Architecture
	FPGA Controller
	Introduction
	Red Pitaya
	Block Design
	DataAquisition (8)
	Xilinx Processing System (9)
	Control (10)
	Signal Generator (11)

	C Programs

	QREAL_42_BPSK.v
	QREAL_42_BPSK.c

