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Introduction

This project seeks to address the challenge of accurately detecting and classifying

forms of harmful brain activity using electroencephalography (EEG) signals from

critically ill patients. Focusing on six distinct patterns, we aim to automate the

analysis process, overcoming the limitations of manual review by specialized neu-

rologists. The significance lies in advancing neurocritical care and epilepsy treat-

ment through quicker and more accurate diagnoses. We propose a weighted en-

semble model composed of three successful models: EfficientNet, ResNet, and

WaveNet, significantly outperforming each model individually. Our model evalua-

tion aligns with the competition’s metric, utilizing Kullback-Leibler (KL) divergence.

This project strives to contribute to accessible, accurate, and cost-effective neuro-

critical care solutions with transformative implications for medical treatments and

diagnoses.

Data Preprocessing

The EEG data used in this project was sourced from critically ill patients, with the

aim of detecting harmful brain activity. The dataset comprised of raw EEG signals

and their corresponding 11,138 spectrograms collected from 1,950 patients. Initial

data handling involved cleaning and preprocessing the raw EEG data to ensure

consistency and usability for machine learning applications.

Spectrogram Transformation: Raw EEG signals were denoised and

transformed into spectrograms using the Short-Time Fourier Transform (STFT).

This conversion aids the application of CNNs by representing the data in the

time-frequency domain.

Data Augmentation: To increase the robustness of our model against

overfitting and to enhance its ability to generalize across different EEG

patterns, we applied data augmentation techniques such as horizontal flipping.

This is particularly useful for image-based data like spectrograms as it simulated

varying EEG conditions, thus expanding the diversity of training examples

Normalization and Standardization: Both EEG signals and spectrograms were

standardized by adjusting their scales to have means of 0 and a standard

deviation of 1.

Filtering and Downsampling: A Butterworth low-pass filter was applied to the

raw EEG signals to attenuate high-frequency noise, enhancing the signal

quality relevant for brain activity analysis. Raw EEG signals were also

downsampled to reduce data dimensionality, making the computational

processing more efficient without losing critical information.

Log Transformation and Scaling: Log transformations were employed on

spectrograms to improve the visibility of less prominent features by

compressing the dynamic range of the signal intensities.

Method

In order to leverage the variety of provided data and features, we decided to em-

ploy an ensemble model comprised of three main models: EfficientNet, ResNet,

andWaveNet. These are popular models that have proven to be successful at var-

ious other classification tasks. Our approach focused on tuning hyperparameters

and strategically fusing these models together so that we could achieve a better

performance than any single one of these models. The different models capture

different underlying patterns in the feature space and combining the individual pre-

dictions would allow us to obtain an aggregated prediction, implicitly capturing the

many underlying patterns, thus resulting in greater accuracy.

EfficientNet

EfficientNet is a CNN commonly used for image classification. It possesses a

unique compound coefficient which is used to systematically scale up the net-

work’s depth, width, and resolution such that it achieves better accuracy and effi-

ciency compared to scaling any singular dimension. We adapted the process de-

scribed by Danial Zakaria [2] by employing transfer learning with EfficientNetB2

and additional non-frozen layers – a global average pooling 2D layer and a dense

layer. Additionally, we trained EfficientNetB3 (containing more model parameters)

on the original dataset.

ResNet

ResNet is a CNN that can have many layers – as it uses residual connections to mit-

igate the vanishing gradient problem. Thus, it is well suited for our time-series data,

as we have 10,000 time steps for each sample. Within the network’s depth, we

include convolutional layers which learn local spatial patterns, and recurrent layers

which model long-range temporal dependencies. We modified a version of ResNet

(called EEGNet) developed by Med Ali Bouchhioua [1] by combining ResNet 1D

Blocks in a sequential mannerwith different hyperparameters and passing the out-

put through a fully connected layer to produce the final predictions.

WaveNet

WaveNet models long-range dependencies in waveform data very well. Using di-

lated convolutions, the kernel is spaced out, allowing it to have a larger coverage

with the same number of parameters and computational cost, while preserving

temporal resolution. When EEGs are administered, the electrodes are placed such

that they form 4 montage chains that track the signals across different brain path-

ways. Grouping the data by chain and processing them in parallel proved usual, via

a process adapted from Danial Zakaria [2].

Ensemble Pipeline

We had multiple datasets: Kaggle’s spectrograms (K), EEG spectrograms (E), and

raw EEG signals (R). Spectrograms are images while EEGs are time series

waveform data. We built one ResNet model trained on EEG data, and

experimented with various combinations of datasets and models as part of the

ensemble, yielding 9 models in total. Inference was done by running the input

through all 9 models and taking a weighted average of the resultant predictions.

Evaluation

KL divergence is a measure of how different two probability distributions are –

in this case, it quantifies the difference between the predicted probability dis-

tribution and the observed target probability distribution determined by human

experts. Formally, for discrete probability distributions P and Q on the same

sample space X , the KL divergence DKL is defined as follows:

DKL(P ||Q) =
∑
x∈X

P (x) log
(

P (x)
Q(x)

)
This is undefined when P (x) = 0 and Q(x) > 0, so the convention adopted is

to explicitly set the contribution to 0 in such cases. The goal is to minimize this

score to model the real-world distribution as accurately as possible. We used a

5-fold cross-validation method during training for preliminary scoring.

Results

MODEL DATA TYPE
LB SCORE

Public Private

ResNet R 0.43 -

EfficientNetB2 K 0.41 -

EfficientNetB2 E 0.39 -

WaveNet R 0.41 -

EfficientNetB2 KE 0.37 -

EfficientNetB2 + WaveNet KR 0.39 -

EfficientNetB2 + WaveNet ER 0.38 -

EfficientNetB2 + WaveNet KER 0.36 -

Ensemble methods

Initial Ensemble Inference 0.345 0.417

ResNet + Transformer 0.353 0.429

EfficientNetB3 Inference 0.350 0.421

Ensemble + ResNet + EfficientNetB3 0.335 0.408

KE + ER + KER + EfficientNetB3 0.321 0.390

KER + EfficientNetB3 0.318 0.386

Table 1. Models against LB Scores

Individual ensemble model scores on the leaderboard (LB) are detailed in Table 1.

The final private LB score for our ensemble method was 0.389 ranking 912 (top

33%). Post-deadline, we got this score down to 0.386. Our results confirm the

effectiveness of aggregating predictions across diverse models to enhance overall

performance.
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